

Nomenclature alphabetical order

- 2a Patch length (mm)
- 2a' Critical patch length (mm)
- 2*b* Patch width (mm)
- 2b' Critical patch width (mm)
- A Area of flow (mm²)
- c Patch depth (mm)
- c' Critical patch depth (mm)
- c_{ACe} External deterioration rate for AC pipes (mm/y)
- c_{ACi} Internal deterioration rate for AC pipes (mm/y)
- c_d Discharge coefficient
- c_l Coefficient for strength reduction
- c_{lc} Coefficient for creep modulus reduction
- c_{lf} Coefficient for fatigue strength reduction
- c_s Intercept parameter for long-term corrosion of metallic pipes (mm)
- C Compression modulus (GPa)
- C_f Fatigue constant for host pipe under cyclic surge pressure
- C_{HW} Hazen Williams roughness coefficient
- C_n Total cash flow for each year (\$)
- $C_n(t)$ Nominal cash flow (\$) at time t
- C_{nothing} Cost of do nothing option (\$)
- $C_r(t)$ Real cash flow (\$) at time t
- CRF Creep retention factor of the liner
- CRF(t) Creep retention factor at design lifetime t
- $CRF(\beta t)$ Creep retention factor at time βt

d	Initial hole	(defect)	6170	(mm)	
и	Illitial fiole	uerect	SIZE	(111111 <i>)</i>	

d_f	Future hole	(defect)	size ((mm))

- D Pipe internal diameter (mm)
- D_0 Pipe external diameter (mm)
- D_L Liner external diameter (mm)
- D_{Li} Liner internal diameter (mm)
- D_M Mean diameter of the host pipe (mm)
- *DN* Pipe nominal diameter (mm)
- E_a Young's modulus of the adhesive (GPa)
- E_A Short-term tensile or compressive modulus of the liner in the axial direction (GPa)
- E_{fa} Short-term flexural modulus of elasticity (axial) of the liner (GPa)
- E_{fal} Flexural creep modulus (axial) of the liner (GPa)
- E_{fh} Short-term flexural modulus of elasticity (hoop) of the liner (GPa)
- E_{fhl} Flexural creep modulus (hoop) of the liner (GPa)
- E_L Short-term modulus of elasticity of the liner (GPa) and is the greater value of: the short-term modulus of elasticity in the liner in the hoop (E_{th}) or axial direction (E_{ta})
- E_{LB} Short-term modulus of elasticity of the liner (GPa) for buckling and is the lesser value of: the short-term modulus of elasticity in the liner in the hoop (E_{th}) or axial direction (E_{ta}).
- $E_{l,dry}$ Dry creep modulus of the liner (GPa)
- $E_{l,wet}$ Wet creep modulus of the liner (GPa)
- E_p Modulus of elasticity of host pipe material (GPa)
- E_s Soil modulus (MPa)
- E_t Short-term tensile modulus of elasticity of the liner (GPa)
- E_{ta} Short-term tensile modulus of elasticity (axial) of the liner (GPa)

E_{tal}	Tensile creep	modulus ((axial)	of the liner ((GPa)
-1.01	T OTTOTTO OT O P			,	(,

- E_{th} Short-term tensile modulus of elasticity (hoop) of the liner (GPa)
- E_{thl} Tensile creep modulus (hoop) of the liner (GPa)
- E_{tl} Tensile creep modulus of the liner (GPa)
- f Friction coefficient of the interface of the host pipe and liner
- g Acceleration due to gravity (m/s^2)
- *h* Pressure head (m)
- H Burial depth (mm)
- H_w Groundwater depth (mm)
- *i* Discount rate (%)
- IN Inflation rate (%)
- I_o Initial investment (\$)
- k Lateral earth pressure coefficient
- k_1 Patch factor
- k_2 Aspect ratio
- *K* Enhancement factor
- K_{IC} Fracture toughness of host pipe material (MPa m^{1/2})
- L Installation length of the liner (m)
- L_{cost} Cost of the liner (\$/m)
- L_{mis} Miscellaneous liner cost (\$)
- L_c Critical crack length (mm)
- L_p Length of the pipe (m)
- L_{ns} Length of the pipe spool (m)
- m_f Fatigue constant for host pipe under cyclic surge pressure

MAOP Maximum allowable operational pressure (MPa)

n_f	Cyclic	surge	factor
Ilf	Cycne	surge	ractor

- n_{PC} Number of recurring cyclic surge pressure cycles per day
- n_{TPC} Total number of surge pressure cycles for the service life of pipe/lined pipe
- N Safety factor for host pipe
- N_i Factor of safety for liner imperfections
- *NPV* Net present value (\$)
- P Operating pressure (MPa)
- P_G Groundwater load (MPa)
- P_{GC} Groundwater load capacity (MPa)
- PN Nominal pressure (bar)
- P_N External pressure on the liner (MPa)
- P_T Test pressure (MPa)
- *P_c* Recurring cyclic surge pressure (MPa)
- *P_{max}* Maximum allowable pressure (MPa)
- P_{min} Minimum internal pressure (MPa)
- $P_{\rm S}$ Surge pressure (MPa)
- P_{v} Vacuum pressure (MPa)
- q_t Total external pressure on pipes (MPa)
- q_{tc} Liner capacity for total external pressure (MPa)
- Q Leak rate (L/s)
- r_s Minimum corrosion rate (long-term) of metallic pipes (mm/y)
- r_{sh} Lateral extension rate for metallic pipes (mm/y)
- r_{sv} Radial corrosion rate for metallic pipes (mm/y)
- R_{cost} Cost of replace option (\$/m)

R_h	Hydraulic radius (m)
$R_{\rm mis}$	Miscellaneous replace cost (\$)
R_W	Water buoyancy factor (unitless)
S	Slope of the energy grade line, or head loss per unit length of pipe (m/m)

SCF'	Critical stress concentration factor

Stress concentration factor

t	Time (years)	
t_h	Time (hours)	

SCF

T	Pipe wall thickness	allowing for uniform	corrosion (mm)
	1	\mathcal{U}	\ /

T	Estimated	external	uniform	corrosion	(mm	١
I_{ext}	Estimateu	externar	uminomi	COHOSIOH	(111111)	,

T_t	AC nine	remaining	wall thicknes	ss at failure	(mm)
I f	AC pipe	Temaning	wan unckne	ss at failule	(111111)

T_{\cdot} .	Estimated	internal	uniform	corrosion	(mm)
I_{int}	Estimated	michiai	ummonm	COHOSION	(111111)

 T_L Liner thickness (mm)

 T_n Pipe nominal wall thickness (mm)

 u_q Existing gap width of host pipe (mm)

 u_{gp} Gap formed due to axial movement or pulling force (mm)

V Flow velocity (m/s)

W Traffic load (kN)

W_s Live load (MPa)

 x_l Coefficient for strength reduction

 x_{lc} Coefficient for creep modulus reduction

 x_{lf} Coefficient for fatigue strength reduction

 y_f Predicted year for failure of an AC pipe (mm)

 α Coefficient of thermal expansion (mm/mm/ $^{\circ}$ C)

- β Fraction of liner service life when out of service
- γ_s Soil unit weight (kN/m³)
- γ_w Unit weight of water (kN/m³)
- Δ Host pipe ovality (%)
- ΔT Temperature change (°C)
- θ Rotation angle (°)
- ν_L Poisson's ratio of the liner
- v_p Poisson's ratio of host pipe material
- σ_A Short-term tensile or compressive strength of the liner in the axial direction (GPa)
- σ_{ad} Adhesion strength of the liner to host pipe substrate (MPa)
- σ_{fa} Short-term flexural strength (axial) of the liner (MPa)
- σ_{fal} Long-term flexural strength (axial) of the liner (MPa)
- σ_{fh} Short-term flexural strength (hoop) of the liner (MPa)
- σ_{fhl} Long-term flexural strength (hoop) of the liner (MPa)
- σ_{max} Maximum stress in the liner (MPa)
- σ_p Tensile stress in the host pipe (for AC pipe) (MPa)
- $\sigma_{t,AC}$ Ultimate tensile strength of AC (MPa)
- σ_t Tensile strength of the liner (MPa)
- σ_t Ultimate tensile strength of host pipe material (MPa)
- σ_{ta} Short-term tensile strength (axial) of the liner (MPa)
- $\sigma_{tal,r}$ Tensile rupture strength (axial) of the liner (MPa)
- σ_{th} Short-term tensile strength (hoop) of the liner (MPa)
- $\sigma_{thl,r}$ Tensile rupture strength (hoop) of the liner (MPa)

 σ_{thl} Long-term strength (hoop) of the liner and is the lesser value of either: the tensile rupture strength (hoop), $\sigma_{thl,r}$ (MPa) or fatigue strength (hoop), $\sigma_{thl,f}$ (MPa)

- $\sigma_{thl,f}$ Fatigue strength (hoop) of the liner (MPa)
- σ_y Yield strength of steel (MPa)
- τ Transition period between short-term and long-term corrosion (y)
- Φ Soil friction angle (°)
- ϕ_c Wet creep reduction factor
- ϕ_s Wet strength reduction factor

