Nomenclature alphabetical order - 2a Patch length (mm) - 2a' Critical patch length (mm) - 2*b* Patch width (mm) - 2b' Critical patch width (mm) - A Area of flow (mm²) - c Patch depth (mm) - c' Critical patch depth (mm) - c_{ACe} External deterioration rate for AC pipes (mm/y) - c_{ACi} Internal deterioration rate for AC pipes (mm/y) - c_d Discharge coefficient - c_l Coefficient for strength reduction - c_{lc} Coefficient for creep modulus reduction - c_{lf} Coefficient for fatigue strength reduction - c_s Intercept parameter for long-term corrosion of metallic pipes (mm) - C Compression modulus (GPa) - C_f Fatigue constant for host pipe under cyclic surge pressure - C_{HW} Hazen Williams roughness coefficient - C_n Total cash flow for each year (\$) - $C_n(t)$ Nominal cash flow (\$) at time t - C_{nothing} Cost of do nothing option (\$) - $C_r(t)$ Real cash flow (\$) at time t - CRF Creep retention factor of the liner - CRF(t) Creep retention factor at design lifetime t - $CRF(\beta t)$ Creep retention factor at time βt | d | Initial hole | (defect) | 6170 | (mm) | | |---|----------------|----------|------|-------------------|--| | и | Illitial fiole | uerect | SIZE | (111111 <i>)</i> | | | d_f | Future hole | (defect) | size (| (mm) |) | |-------|-------------|----------|--------|------|---| | | | | | | | - D Pipe internal diameter (mm) - D_0 Pipe external diameter (mm) - D_L Liner external diameter (mm) - D_{Li} Liner internal diameter (mm) - D_M Mean diameter of the host pipe (mm) - *DN* Pipe nominal diameter (mm) - E_a Young's modulus of the adhesive (GPa) - E_A Short-term tensile or compressive modulus of the liner in the axial direction (GPa) - E_{fa} Short-term flexural modulus of elasticity (axial) of the liner (GPa) - E_{fal} Flexural creep modulus (axial) of the liner (GPa) - E_{fh} Short-term flexural modulus of elasticity (hoop) of the liner (GPa) - E_{fhl} Flexural creep modulus (hoop) of the liner (GPa) - E_L Short-term modulus of elasticity of the liner (GPa) and is the greater value of: the short-term modulus of elasticity in the liner in the hoop (E_{th}) or axial direction (E_{ta}) - E_{LB} Short-term modulus of elasticity of the liner (GPa) for buckling and is the lesser value of: the short-term modulus of elasticity in the liner in the hoop (E_{th}) or axial direction (E_{ta}). - $E_{l,dry}$ Dry creep modulus of the liner (GPa) - $E_{l,wet}$ Wet creep modulus of the liner (GPa) - E_p Modulus of elasticity of host pipe material (GPa) - E_s Soil modulus (MPa) - E_t Short-term tensile modulus of elasticity of the liner (GPa) - E_{ta} Short-term tensile modulus of elasticity (axial) of the liner (GPa) | E_{tal} | Tensile creep | modulus (| (axial) | of the liner (| (GPa) | |-----------|------------------|-----------|---------|----------------|-------| | -1.01 | T OTTOTTO OT O P | | | , | (, | - E_{th} Short-term tensile modulus of elasticity (hoop) of the liner (GPa) - E_{thl} Tensile creep modulus (hoop) of the liner (GPa) - E_{tl} Tensile creep modulus of the liner (GPa) - f Friction coefficient of the interface of the host pipe and liner - g Acceleration due to gravity (m/s^2) - *h* Pressure head (m) - H Burial depth (mm) - H_w Groundwater depth (mm) - *i* Discount rate (%) - IN Inflation rate (%) - I_o Initial investment (\$) - k Lateral earth pressure coefficient - k_1 Patch factor - k_2 Aspect ratio - *K* Enhancement factor - K_{IC} Fracture toughness of host pipe material (MPa m^{1/2}) - L Installation length of the liner (m) - L_{cost} Cost of the liner (\$/m) - L_{mis} Miscellaneous liner cost (\$) - L_c Critical crack length (mm) - L_p Length of the pipe (m) - L_{ns} Length of the pipe spool (m) - m_f Fatigue constant for host pipe under cyclic surge pressure MAOP Maximum allowable operational pressure (MPa) | n_f | Cyclic | surge | factor | |-------|--------|-------|--------| | Ilf | Cycne | surge | ractor | - n_{PC} Number of recurring cyclic surge pressure cycles per day - n_{TPC} Total number of surge pressure cycles for the service life of pipe/lined pipe - N Safety factor for host pipe - N_i Factor of safety for liner imperfections - *NPV* Net present value (\$) - P Operating pressure (MPa) - P_G Groundwater load (MPa) - P_{GC} Groundwater load capacity (MPa) - PN Nominal pressure (bar) - P_N External pressure on the liner (MPa) - P_T Test pressure (MPa) - *P_c* Recurring cyclic surge pressure (MPa) - *P_{max}* Maximum allowable pressure (MPa) - P_{min} Minimum internal pressure (MPa) - $P_{\rm S}$ Surge pressure (MPa) - P_{v} Vacuum pressure (MPa) - q_t Total external pressure on pipes (MPa) - q_{tc} Liner capacity for total external pressure (MPa) - Q Leak rate (L/s) - r_s Minimum corrosion rate (long-term) of metallic pipes (mm/y) - r_{sh} Lateral extension rate for metallic pipes (mm/y) - r_{sv} Radial corrosion rate for metallic pipes (mm/y) - R_{cost} Cost of replace option (\$/m) | R_h | Hydraulic radius (m) | |---------------|--| | $R_{\rm mis}$ | Miscellaneous replace cost (\$) | | R_W | Water buoyancy factor (unitless) | | S | Slope of the energy grade line, or head loss per unit length of pipe (m/m) | | SCF' | Critical stress concentration factor | |------|--------------------------------------| Stress concentration factor | t | Time (years) | | |-------|--------------|--| | t_h | Time (hours) | | SCF | T | Pipe wall thickness | allowing for uniform | corrosion (mm) | |---|---------------------|----------------------|----------------| | | 1 | \mathcal{U} | \ / | | T | Estimated | external | uniform | corrosion | (mm | ١ | |-----------|-----------|----------|---------|-----------|----------|---| | I_{ext} | Estimateu | externar | uminomi | COHOSIOH | (111111) | , | | T_t | AC nine | remaining | wall thicknes | ss at failure | (mm) | |-------|---------|-----------|---------------|---------------|----------| | I f | AC pipe | Temaning | wan unckne | ss at failule | (111111) | | T_{\cdot} . | Estimated | internal | uniform | corrosion | (mm) | |---------------|-----------|----------|---------|-----------|----------| | I_{int} | Estimated | michiai | ummonm | COHOSION | (111111) | T_L Liner thickness (mm) T_n Pipe nominal wall thickness (mm) u_q Existing gap width of host pipe (mm) u_{gp} Gap formed due to axial movement or pulling force (mm) V Flow velocity (m/s) W Traffic load (kN) W_s Live load (MPa) x_l Coefficient for strength reduction x_{lc} Coefficient for creep modulus reduction x_{lf} Coefficient for fatigue strength reduction y_f Predicted year for failure of an AC pipe (mm) α Coefficient of thermal expansion (mm/mm/ $^{\circ}$ C) - β Fraction of liner service life when out of service - γ_s Soil unit weight (kN/m³) - γ_w Unit weight of water (kN/m³) - Δ Host pipe ovality (%) - ΔT Temperature change (°C) - θ Rotation angle (°) - ν_L Poisson's ratio of the liner - v_p Poisson's ratio of host pipe material - σ_A Short-term tensile or compressive strength of the liner in the axial direction (GPa) - σ_{ad} Adhesion strength of the liner to host pipe substrate (MPa) - σ_{fa} Short-term flexural strength (axial) of the liner (MPa) - σ_{fal} Long-term flexural strength (axial) of the liner (MPa) - σ_{fh} Short-term flexural strength (hoop) of the liner (MPa) - σ_{fhl} Long-term flexural strength (hoop) of the liner (MPa) - σ_{max} Maximum stress in the liner (MPa) - σ_p Tensile stress in the host pipe (for AC pipe) (MPa) - $\sigma_{t,AC}$ Ultimate tensile strength of AC (MPa) - σ_t Tensile strength of the liner (MPa) - σ_t Ultimate tensile strength of host pipe material (MPa) - σ_{ta} Short-term tensile strength (axial) of the liner (MPa) - $\sigma_{tal,r}$ Tensile rupture strength (axial) of the liner (MPa) - σ_{th} Short-term tensile strength (hoop) of the liner (MPa) - $\sigma_{thl,r}$ Tensile rupture strength (hoop) of the liner (MPa) σ_{thl} Long-term strength (hoop) of the liner and is the lesser value of either: the tensile rupture strength (hoop), $\sigma_{thl,r}$ (MPa) or fatigue strength (hoop), $\sigma_{thl,f}$ (MPa) - $\sigma_{thl,f}$ Fatigue strength (hoop) of the liner (MPa) - σ_y Yield strength of steel (MPa) - τ Transition period between short-term and long-term corrosion (y) - Φ Soil friction angle (°) - ϕ_c Wet creep reduction factor - ϕ_s Wet strength reduction factor